skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aref Asghari, Chao Wang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Editorial Board of APR (Ed.)
    The sudden rise of the worldwide severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in early 2020 has called into drastic action measures to perform instant detection and reduce the rate of spread. Common clinical and nonclinical diagnostic testing methods have been partially effective in satisfying the increasing demand for fast detection point-of-care (POC) methods to slow down further spread. However, accurate point-of-risk diagnosis of this emerging viral infection is paramount as the need for simultaneous standard operating procedures and symptom management of SARS-CoV-2 will be the norm for years to come. A sensitive, cost-effective biosensor with mass production capability is crucial until a universal vaccination becomes available. Optical biosensors can provide a noninvasive, extremely sensitive rapid detection platform with sensitivity down to 67 fg/ml (1 fM) concentration in a few minutes. These biosensors can be manufactured on a mass scale (millions) to detect the COVID-19 viral load in nasal, saliva, urine, and serological samples, even if the infected person is asymptotic. Methods investigated here are the most advanced available platforms for biosensing optical devices that have resulted from the integration of state-of-the-art designs and materials. These approaches include, but are not limited to, integrated optical devices, plasmonic resonance, and emerging nanomaterial biosensors. The lab-on-chip platforms examined here are suitable not only for SARS-CoV-2 spike protein detection but also for other contagious virions such as influenza and Middle East respiratory syndrome (MERS). 
    more » « less